3.256 \(\int \frac{(d+e x)^2 (d^2-e^2 x^2)^p}{x^2} \, dx\)

Optimal. Leaf size=128 \[ -2 e^2 p x \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )-\frac{e \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;1-\frac{e^2 x^2}{d^2}\right )}{d (p+1)}-\frac{\left (d^2-e^2 x^2\right )^{p+1}}{x} \]

[Out]

-((d^2 - e^2*x^2)^(1 + p)/x) - (2*e^2*p*x*(d^2 - e^2*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2])/(1
 - (e^2*x^2)/d^2)^p - (e*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 - (e^2*x^2)/d^2])/(d*(1
+ p))

________________________________________________________________________________________

Rubi [A]  time = 0.115745, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {1807, 764, 266, 65, 246, 245} \[ -2 e^2 p x \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )-\frac{e \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (1,p+1;p+2;1-\frac{e^2 x^2}{d^2}\right )}{d (p+1)}-\frac{\left (d^2-e^2 x^2\right )^{p+1}}{x} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^2*(d^2 - e^2*x^2)^p)/x^2,x]

[Out]

-((d^2 - e^2*x^2)^(1 + p)/x) - (2*e^2*p*x*(d^2 - e^2*x^2)^p*Hypergeometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2])/(1
 - (e^2*x^2)/d^2)^p - (e*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[1, 1 + p, 2 + p, 1 - (e^2*x^2)/d^2])/(d*(1
+ p))

Rule 1807

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[(R*(c*x)^(m + 1)*(a + b*x^2)^(p + 1))/(a*c*(m + 1)), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 764

Int[(x_)^(m_.)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[f, Int[x^m*(a + c*x^2)^p, x]
, x] + Dist[g, Int[x^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, f, g, p}, x] && IntegerQ[m] &&  !IntegerQ[2
*p]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 65

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)*Hypergeometric2F1[-m, n +
 1, n + 2, 1 + (d*x)/c])/(d*(n + 1)*(-(d/(b*c)))^m), x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Inte
gerQ[m] || GtQ[-(d/(b*c)), 0])

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^Fr
acPart[p], Int[(1 + (b*x^n)/a)^p, x], x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILt
Q[Simplify[1/n + p], 0] &&  !(IntegerQ[p] || GtQ[a, 0])

Rule 245

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, -((b*x^n)/a)],
x] /; FreeQ[{a, b, n, p}, x] &&  !IGtQ[p, 0] &&  !IntegerQ[1/n] &&  !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^2 \left (d^2-e^2 x^2\right )^p}{x^2} \, dx &=-\frac{\left (d^2-e^2 x^2\right )^{1+p}}{x}-\frac{\int \frac{\left (-2 d^3 e+2 d^2 e^2 p x\right ) \left (d^2-e^2 x^2\right )^p}{x} \, dx}{d^2}\\ &=-\frac{\left (d^2-e^2 x^2\right )^{1+p}}{x}+(2 d e) \int \frac{\left (d^2-e^2 x^2\right )^p}{x} \, dx-\left (2 e^2 p\right ) \int \left (d^2-e^2 x^2\right )^p \, dx\\ &=-\frac{\left (d^2-e^2 x^2\right )^{1+p}}{x}+(d e) \operatorname{Subst}\left (\int \frac{\left (d^2-e^2 x\right )^p}{x} \, dx,x,x^2\right )-\left (2 e^2 p \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p}\right ) \int \left (1-\frac{e^2 x^2}{d^2}\right )^p \, dx\\ &=-\frac{\left (d^2-e^2 x^2\right )^{1+p}}{x}-2 e^2 p x \left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )-\frac{e \left (d^2-e^2 x^2\right )^{1+p} \, _2F_1\left (1,1+p;2+p;1-\frac{e^2 x^2}{d^2}\right )}{d (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.0771194, size = 153, normalized size = 1.2 \[ \frac{\left (d^2-e^2 x^2\right )^p \left (1-\frac{e^2 x^2}{d^2}\right )^{-p} \left (e x \left (d e (p+1) x \, _2F_1\left (\frac{1}{2},-p;\frac{3}{2};\frac{e^2 x^2}{d^2}\right )-\left (d^2-e^2 x^2\right ) \left (1-\frac{e^2 x^2}{d^2}\right )^p \, _2F_1\left (1,p+1;p+2;1-\frac{e^2 x^2}{d^2}\right )\right )-d^3 (p+1) \, _2F_1\left (-\frac{1}{2},-p;\frac{1}{2};\frac{e^2 x^2}{d^2}\right )\right )}{d (p+1) x} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^2*(d^2 - e^2*x^2)^p)/x^2,x]

[Out]

((d^2 - e^2*x^2)^p*(-(d^3*(1 + p)*Hypergeometric2F1[-1/2, -p, 1/2, (e^2*x^2)/d^2]) + e*x*(d*e*(1 + p)*x*Hyperg
eometric2F1[1/2, -p, 3/2, (e^2*x^2)/d^2] - (d^2 - e^2*x^2)*(1 - (e^2*x^2)/d^2)^p*Hypergeometric2F1[1, 1 + p, 2
 + p, 1 - (e^2*x^2)/d^2])))/(d*(1 + p)*x*(1 - (e^2*x^2)/d^2)^p)

________________________________________________________________________________________

Maple [F]  time = 0.587, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( ex+d \right ) ^{2} \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}}{{x}^{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2*(-e^2*x^2+d^2)^p/x^2,x)

[Out]

int((e*x+d)^2*(-e^2*x^2+d^2)^p/x^2,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2*(-e^2*x^2+d^2)^p/x^2,x, algorithm="maxima")

[Out]

integrate((e*x + d)^2*(-e^2*x^2 + d^2)^p/x^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (e^{2} x^{2} + 2 \, d e x + d^{2}\right )}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2*(-e^2*x^2+d^2)^p/x^2,x, algorithm="fricas")

[Out]

integral((e^2*x^2 + 2*d*e*x + d^2)*(-e^2*x^2 + d^2)^p/x^2, x)

________________________________________________________________________________________

Sympy [C]  time = 6.27673, size = 116, normalized size = 0.91 \begin{align*} - \frac{d^{2} d^{2 p}{{}_{2}F_{1}\left (\begin{matrix} - \frac{1}{2}, - p \\ \frac{1}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )}}{x} - \frac{d e e^{2 p} x^{2 p} e^{i \pi p} \Gamma \left (- p\right ){{}_{2}F_{1}\left (\begin{matrix} - p, - p \\ 1 - p \end{matrix}\middle |{\frac{d^{2}}{e^{2} x^{2}}} \right )}}{\Gamma \left (1 - p\right )} + d^{2 p} e^{2} x{{}_{2}F_{1}\left (\begin{matrix} \frac{1}{2}, - p \\ \frac{3}{2} \end{matrix}\middle |{\frac{e^{2} x^{2} e^{2 i \pi }}{d^{2}}} \right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2*(-e**2*x**2+d**2)**p/x**2,x)

[Out]

-d**2*d**(2*p)*hyper((-1/2, -p), (1/2,), e**2*x**2*exp_polar(2*I*pi)/d**2)/x - d*e*e**(2*p)*x**(2*p)*exp(I*pi*
p)*gamma(-p)*hyper((-p, -p), (1 - p,), d**2/(e**2*x**2))/gamma(1 - p) + d**(2*p)*e**2*x*hyper((1/2, -p), (3/2,
), e**2*x**2*exp_polar(2*I*pi)/d**2)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{2}{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2*(-e^2*x^2+d^2)^p/x^2,x, algorithm="giac")

[Out]

integrate((e*x + d)^2*(-e^2*x^2 + d^2)^p/x^2, x)